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A method for solving plane initial and boundary-value problems (IBVP) in the dynamic theory of elasticity (DTE), in which the 
solutions are represented in the form of a continuous planar superposition of arbitrary analytic functions which are complex 
plane waves of arbitra~ tdmpe is descn'bed. By representing the solutions in this form it is pox'hie to use the Radon transformatie~, 
by means of which plane IBVP of the DTE reduce to boundary-value problems of the theory of functions of a complex variable: 
in the simplest cases of those of Dirichlet or Keldysh--scdov, and in more complicated cases to Riemann-Hilbert or Riemann 
(matching) problems. The method is illustrated on some basic IBVP of the DTE in a half-plane. An analytic solution for the 
basic mixed problem of the DTE, in which there is no boundary condition that appfies over the entire infinite interval of the 
half-plane boundary, is 'found for the first time. © 1997 Elsevier Science Ltd. All fights reserved. 

In this paper we consider initial and boundary-value problems of the dynamic theory of elasticity for 
a half-plane or those which can be reduced to such in mathematical terms. All the known analytic 
solutions have been obtained on problems (see [ 1 ], for example) in which at least one of the two boundary 
conditions is satisfied over the entire infinite interval of the half-plane boundary. In that case, existing 
methods, such as the Smirnov-Sobolev method (for self-similar problems) or using integrals transforms 
based on Fourier artd (or) Laplace integrals with the Wiener-Hopf technique, can be used. In the more 
complicated case where there is no boundary condition that applies over the entire infinite interval of 
the half-plane boundary (classified in [2] as the basic mixed problem) the considerable difficulties that 
arise when the known methods are used are impossible to overcome within the given framework. 

The method descTibed here can be used for the analytic solution of problems of this kind. It involves 
representing the solutions of the wave equations, to a set of which, as we know (see [1, 3], for example) 
the equations of the DTE can be reduced, as a continuous (integral) superposition of arbitrary functions 
with a unified complex-valued dependence on the coordinates and time. For a fixed value of a parameter, 
these analytic functions of a complex variable are complex plane waves of arbitrary form. In that case 
the kinematic and dynamic characteristics of motion of a homogeneous and isotropic elastic medium 
can be represented in the form of integrals of two arbitrary analytic functions, and the boundary values 
(on the boundary of the half-plane) of those representations turn out to be connected with the inversion 
formulae of the two-dimensional Radon transformation. By this means the IBVP of the DTE can be 
reduced to simple systems of Riemann-Hilbert bonndary-value problems for two functions, which are 

"easy to solve. 
To demonstrate how the method works, we will give examples of the analytic solution of basic IBVP 

of the DTE for a half-plane: a problem with boundary conditions of just one type, a mixed problem, 
and the basic mixed problem. Thorough studies have been made of the first two problems by existing 
methods, and they are presented for illustrative purposes, both to explain some details of the use of 
the Radon transfoimation and to compare them with the new method. The basic mixed problem is 
considered in more detail, with the properties of the general solution illustrated by the example of the 
transient problem of a punch which is rigidly coupled to an elastic half-plane. 

1. F O R M A L I S M  O F  T H E  D T E .  T H E  R E P R E S E N T A T I O N  O F  S O L U T I O N S  

Suppose that a homogeneous isotropic body with shear modulus g and velocities of propagation of 
longitudinal and transverse elastic waves Cl and % respectively, is in plane deformation with zero volume 
forces. Then the expressions for the components of the displacement vector w = {u, v} and non-zero 
components of the stress tensor can be written in the form 
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0 , .  = U[c22/ , - + 
(1.1) 

( )--O[Ot, ( ) .p~O/Op (p=x, y) 

The potentials 9j satisfy the wave equations 

q)j,x~ -I" {pj,yy = ¢;2~ j 

(here and everywhere belowj = 1, 2). 
We shall represent the solutions of Eqs 

waves 

(1.2) 

(1.2) as an integral superposition of arbitrary plane 

ipj(x, y, t)= 2@/tFy(zJ(x' y, t, c), c)dc (1.3) 

Here Fj(zj) are arbitrary twice-differentiable or (if zj are complex) analytic functions which are plane 
waves of arbitrary form for fixed values of the variable c, F is an arbitrary contour in the complex plane 
of c and the functions zj have the form 

zj = kj(c)t  + mj (c)x + nj(c)y (1.4) 

Substituting representations (1.3), allowing for (1.4), into Eqs (1 2), since F.(zj) is arbitrary, we obtain 
" . J . 

the necessary and sufficient condition for expressions (1.3) to be solutions of wave equations (1.2) 

2 2 2 2 (1.5) kj = cj (mj + nj ) 

It is clear from the form of expressions (1.4) and (1.5) that the arbitrary functions Fj(zj) are the class 
of functionally invariant solutions of Eqs (1.2). 

We will now consider a specific case of expressions (1.4). Taking k, = --c, m = 1 in (1.4), from (1.5) 
we find nj = +_i(1 - c2/c~) I/2. To pick out the single-valued branches of the radicals, we make cuts 
[-~, -c~] and [c;, ~] along the real axis in the complex plane of c and fix the branches by the conditions 
(1 - c2/c}) v2 >'0 for c = /a(a  > 0). Then 

zj = ~ + i~j; ~ = x - ct, nj = ~'iY' YJ = (1 - c 2 / c~)~ (1.6) 

In the case considered here, under the condition that c < cj, Fj(zj) will be analytic functions of the 
complex variables zj = ~ + i~. 

In physical terms, the functions Fj(Z. ) no longer correspond to plane waves when c < cj. Following 
Smtrnov and Sobolev, we shall call them complex plane waves. 

In this ease, taking (1.6) into account, we will choose the solutions of Eqs (1.2) as the real parts of 
the representations (1.3) 

tpy(X, y, t ) = R e  1 tFJ 2~i (x , -c t+i ' t j (c )y ,  c)dc (1.7) 

The contour F in the c plane lies in the quadrant Re c < 0, Im c < 0 for Re c < 0, and in quadrant 
Rec  > 0, Imc > 0 for Re c > 0. 

Substituting (1.7) into (1.1), we obtain the following representations for the components of the 
displacement and stresses 

u=Re  27ril rI[F(+iT2(c)F2ldc' v =Re 2nil ![iTl(c)Fj,_ F~]d c 
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O x = kt Re ~ I [(o(c)Fl"+ 2i72 (c)F~qdc 
F 

a~. = gRe ~-~ I. J[y(c)F('+ 2iY2(c)F~dc 
• 2 ~ t  F 

• x, =.Ro ltt2iT, , l'- 
7 = l + r  2, O=I-722+2T 2 

= c)  02F /Oz ) 

(1.8) 

Thus, in principle, the solution of plane IBVP of the DTE can be reduced to finding two analytic 
functions and (or) their derivatives, that is, the boundary-value problems of the theory of functions of 
a complex variable,, for which there are complete solution methods [4, 5]. As we shall show, this reduction 
can in fact be carried out using the Radon transformation. 

2. USE OF THE RADON TRANSFORMATION. A PROBLEM WITH 
BOUNDARY CONDITIONS OF ONE KIND 

We will first consider the problem with boundary conditions of just one kind, the first or second 
boundary-value problem. The first is more interesting for applications. The second can be analysed in 
the same way. 

On the boundary of the elastic half-plane y < 0 let the normal and shear stresses be given 

O,.(x, O, t)=O0(x, t), Zxy(X, O, t )=%(x,  t ) ( t > 0 )  

Zero initial conditions are specified 

(2.1) 

w = O w / a t = o  ( t<o)  (2.2) 

Substituting the representations for the stresses from (1.8) into conditions (2.1), we can write the 
latter in the form 

Re 1 ~[T(c)F:,+ + 2iT2(c)F~,+]d c =-~t-]Oo(X, t) 
2rci r 

Re 2nil t[2iTl(c)Fl. + _T(c)F~,+]dc = g_lXo(X, t) 

(2.3) 

Here F/'+ = F/'+(~(x, t, c), c), with zj = ~ + iO, are the boundary values of functions F/'+(z:), analytic 
in the half-planes Im zj > 0. 

Using the relation f-(~) + = - f  (~), where the bar denotes the complex conjugate, we can rewrite the 
first equation of (2.3), for example, in the form 

I j{T(c)[Fi,,+ + F(,_]+2i72(c)[F~,+ _ F~'-]}ac = -Ix-JCo(X, t) 
4hi r 

(2.4) 

where Fj"- = F/'- (~(x, t, c), c) are the boundary values, for zj = ~ -/0, of the functions F/ '-  (zj), which 
are analytic in half-planes Im zj < 0. 

Using the Sokhotskii-Plemelj formulae [6], from (2.4) we obtain 

I !_~** E(~', c)c)d~,dc=~o(X, t) (2.5) 
4n 2 ~ ' -~ (x ,  t, 

Here Y.(~) is a function which satisfies the H61der condition [5], including the point at infinity. 
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Expression (2.5) is the inversion formula for the two-dimensional Radon transformation (RT) (see 
[7, 8] for example) if E(~, c) is the RT of the function a0(x, t) 

j 0(x, t) (x-ct-¢)axdt (2.6) 

where 5(.) is the Dirac delta-function. Hence expressions (2.3) or (2.4), which implicitly contain the 
boundary values of Cauehy-type integrals, are analogues of the classical inversion formulae for the two- 
dimensional RE. 

It will be more convenient to use a formal separation of the operations in expressions (2.5) and (2.6) 
which differs slightly from that used in [7, 8], where it is strictly the RT that is referred to as the integral 
part of formula (2.6), and the differentiation operation appears in the inversion formda (2.5). 

Applying the RT in form (2.6) to system (2.3) and allowing for the fact that transformation of the 
left-hand sides of expressions (2.3) actually eliminates the operation of integration with respect to variable 
c (this follows from (2.5) and the Sokhotskii-Plemelj formulae), we obtain 

Re[~FI,,+ (~) + 2i~2 F2,,+ (~)] = _~-Iy.(~) 
(2.7) 

Re[2iyl F( '+ (~) - yF2 "+ (~)] = ~t-lT(~) 

where T(~) is defined by an expression similar to (2.6), with (~0(x, t) replaced by Xo(X, t). 
Regarding the equations of system (2.7) as independent Dirichlet problems for the expressions in 

square brackets, using the Sehwarz integral [6] for Im zj = 0 we find 

Fj (~)=--~ ---7 I Aj(~') +Aj(~) (2.8) 
I~ l r C t  - -  

R = y2 _ 4yiy 2 

Then from (2.8), using the properties of a Cauchy integral [6], we obtain 

,,+ 1 ~ d~ (2.9) 

Integrating expressions (2.9) with respect to the variables zj we find 

Fj'+(zj)=--~i j AJ(~)ln~-zj~ ~ (2.10) 

If the functions Fj"+(zj) and Fj"+(zj) are known, all the required kinematic and dynamic characteristics 
of motion of an elastic medium in a half-plane can be found using representations (1.8). 

3. MIXED BOUNDARY C O N D I T I O N S  

We will now consider the problem in which one of the two boundary conditions is mixed: the condition 
on one part of the y = 0 is different from that on the other, while the second condition applies over 
the whole axisy = 0. Then the points at which the type of boundary condition changes might move 
along the boundary of the half-plane with arbitrary variable velocity. The method can be described by 
considering a problem with the following boundary and initial conditions 

fly(x, 0, t)=O0(x, t) (x<l(t),  t>O) 

Zxy(X, O, t)='%(x, t) (-oo<x<oo, t>O) 

v(x, 0, t)=Vo(X, t)(x>~l(t), t>0 )  (3.1) 

w = ~ w / 3 t = 0  ( t<0)  
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Here l(t) is an arbitrary function of time. 
Many problems iin fracture dynamics [9, 10] involving the penetration and (or) motion of smooth 

punches [11, 12], aad of the diffraction of elastic waves [13], among others, reduce to problems with 
conditions (3.1). 

For a unique sohition, the displacement vector must be bounded and continuous in the neighbour- 
hood of the point where the boundary condition changes type, allowing for an integrable singularity in 
the stresses and displacement velocity at that point [1] 

w(x, y, t) = a(t) + O(r ~), r ---> 0 (r = [(x - /( t))  2 + y2 ]~) (3.2) 

If dl/dt = O, we need merely put e > 0 in (3.2). But if dl/dt # O, we must use the stronger condition: 
~> 1/2 which, as we know [1], allows for possible absorption or emission of energy at the point where 

the boundary condition changes type. 
Substituting the representations for the stresses and displacements in (1.8) into the boundary 

conditions in (3.1), applying the RT in the form (2.6) to the result (taking the initial conditions of (3.1) 
into account) and putting 

{ E(~) 1 • [O0(x, t ) H ( l ( t ) - x ) ]  

V(~)J . . . .  [Uo(X, t ) H ( x - l ( t ) ) J  
(3.3) 

(the Heaviside fun,~ions H( . )  have been introduced to emphasize that the carriers of the functions 
Oo(X, t), "Co(X, t) and Uo(X, t) have limiting values), we obtain a system of Riemann-Hilbert 
boundary-value problems for the functions F'j(zj) and F"j(zj), which are analytic in the half-planes 
I m z j >  0 

I-~t -IX(~) (~ < l, - c t )  
Re[TFI" (~) + 2iT2 F2t~)l = [ 0(~ > l,) (3.4) 

Re[2iT~ F~" (~) - TF~) ]  = ~la-~T(~) 
(~ < 0) 

[ > o) 

Relish Fl'(~) - F2"(~)] = V(~) (l. - ct < ~ < l.) 

(3.5) 

(3.6) 

Here 1. = l(t.), where t. is a root of the equation ~ + ct. - l(t.) = O. 
Note that the intervals on the Im z j =  0 axis on which conditions (3.4)-(3.6) are defined follow at 

once from (3.3) and the theorem on the properties of a carrier of the RT [7, 8]. 
Condition (3.5) can be regarded as a Dirichlet problem for the expression in square brackets, which 

can be solved using the Schwarz integral [6] and, when Im zj = 0, has the form 

-II1 "T(~')"+ ] 
2iT,FI"(~)-TF2'~)=I.t "~-fJ .~T~d~ T(~)=l . t - '~(~)  (3.7) 

Differentiating Eq. (3.6) with respect to ~ and using (3.7) to eliminate in turn the functions F'I(~) 
and F"2(~) for the conditions (3.4) and (3.6) (after differentiating the latter), we obtain two separate 
independent Riemaun-Hilbert problems for F'l(Zl) and F"2(z2). It is better to use the known relation 
between Riemann-Hilbert and Riemann (matching) problems [4, 5] and rewrite these in the form of 
Riemann problems 

f 9 
El,., + ( ~ ) R ~  El ._ (~)= q--~[2 Re iT2~(~)- TX(~)](~ < 1. - c t )  

t 0(~ > l.) 

Fl"+ (~) + Fl"- (~) = iT~ (T~ - 1) [TV'(~) - Re ~(~)](1. - ct < ~ < 1.) 

(3.8) 
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F2'+(~)+ R--R F2"-(~)=~[iTl[Reff~-f~(~)-2Z(~)](~<l*-ct)p~L iv, 

L 
F~ '+ (~)-  F~'-(~) = ~ [2 V'(~)- I t-lf~(~)](l, - c t  < ~ < l.) 

t 2 - 1  

(3.9) 

Here V' = dV/~,  the function V' is defined in (2.8) and/]  is the complex conjugate of R. 
Problems (3.8) and (3.9) are referred to as Riemann problems with discontinuous coefficients [4, 5]. 

In the class of functions which vanish at infinity, provided that the functions Z(~), t~(~) and R(~) satisfy 
a H61der condition (excluding any points of discontinuity of the coefficients), known formulae [4, 5] 
can be used to write their solutions in the form 

f I I.-.  d~ = Io'(z')l- ~ !.. G~-'(~)[2Rei~/2f~(~)- ?Y~(~)] ~-  z, F{' (Zl) Iti 

, '  &} 
+ - l) t.I,-. - la R e a ( { ) l  ( 3 .10 )  

f . -  l , - c t  

G2(z2 ) !.  -z2 

-t T22- 1) t.-~c, a21(~)[2V'({)-~t-' Rel'~(~)] 

Here 

l 5 - 1, - z j  1 a =  In R 
Gj(Zj): l , - c t - z j  ' 2•i R 

provided that 0 ~< arg(/]/R) < 2n, which ensures that the solution of problems (3.8) and (3.9) is unique 
and also that the solution of the original problem (3.1) behaves in accordance with conditions (3.2) at 
the point where the type of boundary condition changes. 

Now, knowing the functions F3"(zl), we can use (1.8) to obtain expressions for the stresses in the half- 
plane. The displacements can be found from the stresses or by integrating expressions (3.10) with respect 
to zj to find F~(zj), and then using the representations for the displacements from (1.8). 

4. THE BASIC MIXED P R O B L E M  

A characteristic feature of the basic mixed problem is that no boundary condition applies over the 
entire half-plane boundary. As we have already noted, existing methods cannot be used to obtain an 
analytic solution of this problem (el. [1, p. 244]). The Smirnov-Sobolev method yields a complicated 
system of Riemann-Hilbert boundary-value problems with variable coefficients or the equivalent system 
of integral equations, for which there are no effective methods of solution. The method of Fourier and 
Laplace integral transformations requires the matrices of the functions to be factorized, which is 
impossible to do in practice. 

With the method described here, the basic mixed problem reduces to a comparatively simple style 
of Riemann-Hilbert problems with constant coefficients, which is easy to solve. 

Suppose that for the elastic half-planey < 0 the following boundary and initial conditions are specified 

(~y(x, 0, t )=~0(x,  t), X~.(x, O, t)=Xo(X, t ) ( x < 0 ,  t > 0 )  

u(x, O, t)=uo(x, t), v(x, O, t)=Uo(X, t)(x~>0, />0 )  

w = O w / O t = 0  ( t<0)  

(4.1) 

We ensure a unique solution by imposing a constraint on the behaviour of the displacement vector 
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in the neighbourhood of the point where the boundary condition changes type 

w(x, y, t)=a(t)+O(r~), e>O, r-*O (r=(xe +y2) ~ (4.2) 

Substituting the representations of the displacements and stresses of (1.8) into the boundary conditions 
of (4.1) and applying the RT in the form (2.6) to the resulting relations, we obtain a system of boundary- 
value problems for functions F~(z/) and F'/(z/), which are analytic in the half-planes Im z />  0 

I-~t-~ro(~) (~ <-ct) 
Re['tFf" (~)+ 2iT2F2~)]=[ 0(~>0) (4.3) 

Re[2i), I Ff' (~) - YF2'(P,) ] = f,~ ta-'T0 (~) (~ < ~ct) 
[ o(~ > o) 

(4.4) 

Re[Ff(~)  + i ' /2F~(~)] = Uo(~) (-ct < ~ < O) 

Re[ i ' / ,F:(~)  - F2'(~)] = Vo(~) (-ct  < ~ < O) 

l [o0(x, 
T°(~)[ 7 ~ "c°(x' t)H(-x) 

u°(¢'/-- :'1 .o(x. ,).(x) 
Vo(~) J [ Uo(X, t)n(x) 

.H ( t )~)( x - ct - ~)dxdt 

(4.5) 

(4.6) 

As in the previous case (Section 3), system (4.3)-(4.6) can be solved in terms of the functions F/(z/). 
Here, however, it is better to use a method which gives the solution in the form of expressions which 
are the RT of the stresses on the half-plane boundary. This is done using formulae (2.8), in this case 
taking the functions Y(~) and T(~) on the boundary of the half-planes Im z i > 0 to be unknown (in fact, 
they are unknown the interval -ct < ~ < 0). 

We now differentiate Eqs (4.5) and (4.6) with respect to ~ and substitute (4.3)-(4.6) (after differ- 
entiating) into expressions (2.8). Thus, using the Sokhotskh'-Plemelj formulae [6], we introduce the 
following relation,; 

= a- ± 7 ~i  --'** ~' - ~ = Pl+ (~) + PI- (~) (4.7) 

T(~) = P2+(~)-P2-(~)' xi.- '**~'-~ P2+ (~) + P2- (P~) (4.8) 

wber¢, for z /=  ~ :_~ i0, P~(~) and P~(~) are the boundary values of certain functions P~+(z/) and Pi(zj), 
which are analytic in the half-planes Imz/> 0 and Imz, < 0 respectively. As a result we obtain a system 
of Riemaun matching boundary-value problems for t~e functions P/±(z/), with the following relation 
between their limiting values on the Im ~ = 0 axis 

[r.o(~) (~ < -ct) ~To(~) (~ < -ct) 
~+(¢)-P'-(¢)=[ 0(¢>0) ''~(~)-~-(¢)=( 0(¢>0) (4.9) 

u m 

[~-,~ ,,:,--Ee,-(~)+ ,"~(¢)- ef(~)=~tu~(¢)(-ct<¢<o) (4.10) 

-~ P,+ (~)--~ ~- (~)--~ P; (¢) +-~ pf (¢) = .v~(¢)(-ct < ¢ < o) (4.11) 

Q-- 2y,y2 - y, Nj = iyj(l - y2 2) (4.12) 

U'0 = 0U0/3~, 1Io = 0V0/3~, the function R is defined in (2.8) and the bar denotes the complex conjugate. 
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We now multiply Eq. (4.11) by a certain constantA and add it term-by-term to (4.10) 

l(Q + AN, )[Pt + (~) + BP~ (~)] - ~-(Q + A~/t )[ Pt- (~) + CP2 (~)] = 11[ U~ (~) + A Vg(~)] (4.13) 

B= N2 - AQ C= ~I2 - A Q  
Q + AN, ' -~ + A ~  t (4.14) 

We choose A so that B = C. Then the condition obtained f o r A  from (4.14) leads to a quadratic 
equation, which has a solution of the form 

An = 1.~q?l[p+(_l)n_l(p2 _ 4q, q2)~ ] (n = 1,2) 

qj = NjQ - NjQ,  p = NIN 2 - ~/iN2 

(4.15) 

I f / ]  -- R, Q -- Q and ~ - Nj, we have B = C for anyA.  In that ease, as we can see from (4.13) 
and (4.14), forA1 andA2 it is better to take the values 

A, = N--L A 2 =---Q (4.16) 
Q ' N1 

Substituting the values ofA1 andA2 found using (4.15) term-by-term into (4.14) and then substituting 
Ax andA2 and the corresponding values of  B1 and B2 (since B = C) into (4.13), we obtain 

+ + - -  - -  • • 

[Pl (~)+ BnP{ (F~)]- ~,,[PI (~1+ BnP2 (~11 = Vn[Uo(~)+ AnV6(~)] 
(n = 1, 2; - ct < ~ < 0) (4.17) 

- N2 - AnQ ' ~'n = ~-R Q + AnN a , = laR (4.18) 
B,, Q+ AnNt R Q+ AnN Z v ,  Q+ AnNt 

Conditions (4.9) can be written in the form 

_ ,jZo(~) + BnTo (¢)(~ < -ct) 
[~+(¢)  + 8"~+(~' ) ] -  [~ - (¢ )  + Bn~- (~)] -- L 0('~ >0 )  (4.19) 

This method of  reducing the system of Riemann-Hilbert  boundary-value problems (4.3)-(4.6) to two 
independent Riemann problems (for n = 1 and n = 2 in (4.17)-(4.19) respectively) is taken from [14], 
where it was used to solve problems of  static contact for an anisotropic half-plane. 

The solutions of  problems (4.17) and (4.19) for zj = ~ + i0 which vanish at infinity can be written 
out  for the case of  discontinuous coefficients using the formulae of  [4, 5]. Considering the result (for 
n = 1, 2) as a system of two algebraic equations with respect to the functions P~](~) and P~(~), we 
find 

pj+(~)= 1 (-l) j-I 2 { 0 U;(~')+AnVd(~')d~, + X(-O"-'v.B~-J. G.(~) iG~"(~') ~'-~i 
2~i B 2 - B  l .=t -c, 

+niLu6 f~) + A. V~(~)] + l__ G f~)-f' G; ~ f~') Sof~') + 8.%(~') d~" + ~R n _. ~ ' - ~  

+ ~ [Z°(~) + BnT°(~)] } (4.20) 

°°  1 
G n ( ~ ) = ~ + c t )  ' (Xn-  2~i - - - - I n  ~.., - 2 n  ~< arg ~.,, < 0 

In the notation of  (4.7) and (4.8), we have 
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X(~)  = 2 Re P~+ (~),  T (~ )  = 2 Re P2 + (~) (4 ,21)  

Knowing the ftmctions ~ )  and T(~), and now also knowing their  values on  the ent ire  boundary  of  
the half-plane I m z  i > 0, we can find F'j(zj) and F"j(zj) f rom formulae  (2.9) and (2.10), and then  use (1.8) 
to  obtain the final 'expressions for  the components  o f  the displacement and stresses in the half-plane. 

5. E X A M P L E :  T H E  D Y N A M I C  P R O B L E M  O F  A P U N C H  W H I C H  IS 
P I D I G L Y  A T T A C H E D  T O  AN E L A S T I C  H A L F - P L A N E  

As an example of the use of the results obtained in the previous section, we will consider the following basic 
mixed DTE problem. In the semi-infinite intervalx ~> 0 of the boundary of the elastic half-planey < 0 at time t 
--- 0, suppose that a ;punch, rigidly coupled to the half-plane, is set in motion. The law of motion of the punch is 
given by the equations u = Uo(X, t), v = v0(x, t). Before the punch starts to move, the haft-plane is at rest. Thus, 
the boundary and initial conditions of the problem are of the form (4.1), with o0(x, t) = x0(x, t) = 0, and its general 
solution is given by formulae (1.8), (2.9), (2.10), (4.20) and (4.21) with X0(~) = T0(~) = 0. 

The major interest: in the problem of a punch concerns the stresses underneath it, an analysis of which uncovers 
typical properties of this kind of problem. We will now discuss how these stresses are calculated. 

The functions ~ )  and T(~) are RT of the values of the normal and shear stresses on the boundary of the half- 
plane. The stresses underneath the punch can be found at once from (4.21) using 7.,(~) and T(~) (without having 
to calculate the functions F'~(zj)), after applying to (4.21) the inverse RT (cf. (2.5)) 

o,xo,, t 
o, ,,  ', ,, r l .  2 

(5.1) 

qhking (4.20) and the notation of (2.6) and (4.12) into account, for x >~ 0, in the complex plane of c, the integrands 
in (5.1) have branch points c = -+c2, +-Cl, X/t and, forx / t  < c2, are analytic in the entire c-plane with cuts --** < Re 
c - c j ,  x/t < Re c < ,~,, Im c = 0 except poss~ly for simple poles of the functions P~(c). 

The position of the contour F was discussed in Section 1. By deforming along the cut [x/t, **], we can transform 
the integrals in (5.1) into integrals over the interval (x/t, **), traversed twice. Then, substituting (4.20) into (5.1) 
with 7-0 = To = 0, using the notation of (1.6) we have 

oo 2 B3_ n (C) 
~Oy(X, 0, t ' ~=  S Re ~" I  " 1 I S n ( x ' t ' c ' d c  (5.2) 
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We now take typical subintervalsx/t  < c2, c2 < x/t < c 1 and cl < x/t < ** of the interval of integration in (5.2) 
for x/t  < c2. 

Forx/ t  > cl from (,¢.12) with c > cl we have 

Q = -2"/;~/~ -¥ ,  

R - r  2 +as;v; 

, 2 ¸ Nj = - ? j  (I - ~/2 ) 

(~ = (c2 / ¢2 _ I)'A) 

and, therefore,/]  m R Q m Q, ~ _= Nj. Then, from the comment made just before (4.16), from (4.16), (4.18) and 
(4.20) we obtain: BI -'-" vl = 0, B2 = v2 = ~* and ¢xn = 0. In this case, expressions (5.2) describe the stresses under 
the punch at points that are not reached by the disturbances from the edgex = 0. These are the stresses that there 
would be if conditions u = uo(x, t) and v = vo(x, t) held on the entire half-plane boundary. 

For c2 < x/t < .o from (4.12), (4.15), (4.18) and (4.20) for c2 < c < cl, we have 

Q= 2/TIy~ -Y, NI =iy1(1-~/22), N 2 = -y [ ( l -y22 )  

R= y 2-4iTIY~, AI =2T~/% A2 =-Y~ (5.3) 

B l = A 2 ,  B 2 = A  t , c q = 0  

ot 2 = l (arc tg  4~/1~ _ arctg.yl~/~ ) 
it y -  
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In this case, expressions (5.2) descrt~e the stresses under the punch with disturbances in the form of a cylindrical 
longitudinal wave and a forward transverse wave coming from the edge of the punch. 

Forx/t < c2, from (4.12), (4.15), (4.18) and (4.20) for 0 < c < c2, we find 

QffiQ=2.YiT2-',t,, Nj=iTj(1-y2), ~lj=-Nj 

Al=i~2/Yi, A2=-A 1, BI=A 2, B2=A t 

~zR=y2_4YiY2, a l = -  1 inK+ 
2hi K_ 

a 2 = - ~ l  In K-, K+=2YfY2-y+ ~,~/'~-1~2(1-,,f 2) 
2hi K+ 

(5.4) 

In the interval 0 < c < c2 the function K+(c) is positive for 0 < c < ca, where ca is the solution of the Rayleigh 
equation (R(ca) -- 0), and is negative for ca < c < c~ and the function K_(c) is negative in the entire interval 0 < c < 
c2. Hence, the functions tXl(C) and a2(c) are pure imaginary in the portion ca < c < c2 of the interval 0 < c < c2, and 
complex (Re oh(c) - 1/2) in 0 < c < ca. Thus in the interval 0 < c < c2 it is better to put ax(C) and o,2(c) in the form 

a1(c)=I H(ca -c)+ia(c), a2(c)='~|(c) (5.5) 

1 in K+(c)[, {10 (c<cR) 
a(c)=-f~ g_--~c) I n(ca-c)= (c>ce) 

Taking the limit asx ~ 0, from (5.2), using (5.3)-(5.5), we obtain 

, ; c x . 0 . , ) j - - ;  = 

fn (x,t,c)=cos[Im ((x.(c))InC@]+isin[Im(an(C))InC@] (5.7) 

(-I) "-I v.(c) (c)(Ct)_~.(c) o 
~2 B2Cc)-BI J'(-~')-~.cc)(~'+ct)~.cc)-I x Kn(t,c)= 

-CI 

x[U6 (~', c)+ A.(c)V~(~.', c)]d~' 
~. (c) = - R e a .  (c) 

As in the case of the correspondmg" static problem (see [2], for example),_1/2 it follows from (5.6), taking (5.5) 
into account, that the stresses at the point x = 0 have a singularity of typex , superimposed by oscillations which 
are typical of this kind of problem, and thus the stresses change sign an infinite number of times as x --> 0. We can 
see from (5.7) that here, unlike the static case, the characteristic size of the region of oscillations depends not only 
on the elastic constants (which appear in oh), but also on time, and is therefore a non-stationary quantity. 

6. SOME C O N C L U D I N G  R E M A R K S  

The method described here succeeds in combining the basic ideas of two independent approaches 
to the solution of dynamic problems, dating back to Fourier and D'Alembert: the method of integral 
transforms, in which the solutions are represented in the form of a continuous superposition of plane 
waves of exponential form (Fourier and Laplace integrals), and the Smirnov-Sobolev method, in which 
the solution is sought in the form of arbitrary analytic functions. This combined approach, by means 
of which the solutions can be represented as an integral superposition of arbitrary analytic functions 
corresponding to plane waves of arbitrary form, has, in particular, obviated the constraints of self- 
similarity (in relation to the Smirnov-Sobolev method), whilst retaining the possibility of reducing the 
IBVP to boundary-value problems of the theory of analytic functions (in relation to the conventional 
version of the method of integral transforms). 

To some extent, representations (1.7) and (1.8) are the most general and, obviously, the most suitable 
representations of the kinematic and dynamic characteristics of the motion of a homogeneous and 
isotropic elastic medium in plane deformation, since they can (in principle) be combined with the Radon 
transformation to reduce the IBVP of the DTE to the substantially simpler boundary-value problems 
of the theory of functions of a complex variable. 
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